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COMMENT 

AB percolation on close-packed graphs 

John C Wiermantt 
Mathematical Sciences Department, Johns Hopkins University, Baltimore, MD 21218, USA 

Received 15 December 1987 

Abstract. For a class of close-packed graphs, the AB percolation critical probability is 
equal to the classical site percolation critical probability of the related graph obtained by 
inserting next-nearest-neighbour bonds. As a consequence, infinite AB percolation occurs 
for many fully triangulated graphs. 

1. Introduction 

We consider a variant of the classical percolation model which was introduced indepen- 
dently by Mai and Halley (1980) as ‘AB percolation’ and SevSek et al (1983) and 
Turban (1983) as ‘antipercolation’. In the model, the sites of an infinite graph G are 
independently labelled A and B with probabilities p and 1 - p ,  respectively. Neighbour- 
ing sites which have opposite labels are connected by a bond, while neighbouring sites 
which have a common label are not. The object of study is the probability distribution 
of the size of clusters of sites which are connected by AB bonds. As in classical 
percolation, the first step is to determine if infinite clusters exist for various values of 
the parameter p .  This question is more interesting for AB percolation than classical 
site percolation, since there are common graphs for which infinite clusters cannot exist 
for any value of p E [0, 11 for AB percolation. 

Mai and Halley (1980) treated AB percolation as a model for gelation, letting the 
labels represent occupancy of the site by one of two reactants, which are present in 
proportions p and 1-p. Their Monte Carlo simulation indicated that infinite AB 
clusters exist for p E [0.2145, 0.78551 on the triangular lattice. Halley (1983) discussed 
a more general class of models, called ‘polychromatic percolation’ and proved the 
non-existence of infinite AB clusters when p = on bipartite graphs with site percolation 
critical probability greater than f. Since one expects that the probability of existence 
of an infinite AB percolation cluster is largest when p = f, this suggests that infinite 
AB clusters cannot exist for any value of p on such graphs (but this has not been 
proved). Turban (1983) and SevSek et al (1983) were motivated by the study of 
antiferromagnetism. They provided an argument for existence of infinite AB percola- 
tion on the triangular lattice which, although incorrect, suggested the method presented 
in this comment. Wilkinson ( 1987) considered two-parameter percolation on bipartite 
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graphs as a model for gelation and noted that AB percolation on a bipartite graph is 
a special case of his model. 

Other than the work of Halley (1983), mathematically rigorous results have been 
obtained only recently. Scheinerman and Wierman (1987) produced the first example 
of a two-dimensional periodic graph on which AB percolation occurs. Appel and 
Wierman (1987) proved that AB percolation is impossible on a class of bipartite graphs 
(including the square and hexagonal lattices), partially verifying a conjecture of Halley 
(1983). Wierman and Appel (1987) proved that infinite AB percolation clusters exist 
on the triangular lattice when p~[0 .497 ,  0.5031. This was improved to p~C0.4031, 
0.59691 by Wierman (1988) by identifying the threshold for AB percolation on the 
triangular lattice as the site percolation critical probability of the triangular lattice with 
nearest- and next-nearest-neighbour bonds. The main theorem of this comment gen- 
eralises this result. Wierman (1988) also presented a proof that infinite AB percolation 
occurs on any graph with site percolation critical probability less than 4. 

2. Definitions and results 

A graph G consists of a countable set V (  G) of vertices and a countable set E (  G) of 
pairs of vertices, called edges. An assignment of a label, A or B, to each vertex of G 
is a configuration on G, i.e. a configuration is an element w E {A ,  B}v‘G’  or equivalently 
a function o : V (  G) + { A ,  B } .  The AB percolation model is a probability model on 
the sample space { A ,  B}v‘c’ of configurations on G, with probability measure Pp such 
that the labels of vertices of G are independent random variables with probability p 
of labelling each vertex A. 

An edge of G is an AB bond if its endpoints have different labels. An AB path is 
a path in which all edges are AB bonds. (We will use the terms ‘A path’ and ‘B path’ 
to refer to paths with all vertices labelled A or B, respectively. At times, we will refer 
to the labels as colours and refer to an object as ‘monochromatic’ if all its vertices 
have a common label.) The AB cluster containing a vertex U, denoted W:”, is the set 
of vertices which may be reached from U through an AB path. The number of vertices 
in W;” is denoted by 1 Wt”1. Define the AB percolation probability by 

Note that AB paths and AB clusters are unchanged if the labels of all vertices are 
changed, but the parameter of the model is changed from p to, 1 - p .  Thus 

e t”(  p ,  G) = et”( 1 - p ,  G) 

for all p E [0, 11, so the AB percolation probability function is symmetric about f. 
While the value of &‘“(p, G) may depend on the vertex U, the set of values of p for 

which et”( p ,  G )  > 0 is independent of the choice of vertex if G is a connected graph. 
Thus, for a connected graph G and an arbitrary site U, we define the AB critical 
probability by 

p”,”( G) = inf{p: OtB(p, G) > 0} 

with the convention that, if the set on the right-hand side is empty, p“,“( G) = +W. (We 
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denote the site percolation probability function of a graph G by 6 , ( p ,  G).  We will 
denote the classical site percolation critical probability by pc(G) if the results of 
Menshikov et al (1986) or Aizenman and Barsky (1987) apply, so that the common 
versions of critical probability are all equal. Otherwise, pH(G) denotes the critical 
probability for existence of infinite clusters with positive probability and p T (  G )  denotes 
the critical probability for infinite expected cluster size.) Note that we do not know 
that the AB percolation probability is monotone in p ,  so it may be possible that 
8tB(p, G )  = 0 for a value p E (p iB ,  t ] .  

For any graph G, define the graph G, as follows. The vertex set of G2 is the same 
as that of G. The edge set of G, contains an edge between each pair of vertices which 
may be connected by a path of two edges in G. In the case of fully triangulated graphs 
G, the graph G2 contains edges between all neighbours and next-nearest neighbours. 
Since successive vertices on an AB path have alternating labels, if an infinite AB path 
exists on G, then there exists an infinite A path on G2 and an infinite B path on G2. 
The existence of such paths requires that both p 3 p H  ( G2) and 1 - p 3 p H  (G,) hold. 
Therefore, we have the lower bound 

and the fact that if p H ( G 2 ) > f ,  then BtB(p, G)=O for all P E  [0, 13, i.e. that AB 
percolation is impossible on G. 

Define the class ie of graphs G constructed as follows. Consider a partition of Rd,  
d 3 1, into polyhedra, such that every compact set of R d  intersects only finitely many 
polyhedra. The vertex set of G is the set of vertices of polyhedra in the partition. The 
polyhedra in the partition will be called cells (to distinguish them from unions of 
these). Close-packing a cell C means inserting edges between all pairs of vertices of 
C. The edge set of G is the set of edges resulting from close-packing all cells in the 
partition. For d =2,  ie is essentially the class of matching graphs of planar mosaics 
(defined in Kesten (1982)). The difference arises from the fact that a mosaic permits 
multiple edges between a pair of vertices, which are irrelevant when treating site 
percolation and AB percolation. 

The principal result of this paper may now be stated. 

( b )  If G E  ie and pH(G2)<$,  then p iB(G)=pH(GZ) .  

The interpretation of ( a )  is that infinite AB percolation clusters exist for exactly the 
same parameter values at which infinite site percolation clusters exist on G2. The 
simpler consequence ( b )  says that the two models have equal critical probabilities if 
p H (  G2) < 4, but does not provide the information contained in ( a )  about the behaviour 
at the critical probability. 

Note that the theorem does not require the graph G to satisfy any symmetry or 
periodicity conditions. However, application of the result to prove the existence of 
AB percolation on a given graph G requires that we show pH(G2) < 4 or e,(; ,  G2) > 0. 
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To apply the results of Kesten (1982) regarding the critical probabilities of two- 
dimensional dual percolation models and strict inequalities between critical prob- 
abilities of related two-dimensional graphs, such regularity conditions are needed. 

The proof of the theorem is given in § 3 and discussion of its application to show 
the existence of AB percolation on fully triangulated periodic graphs, and matching 
graphs of periodic planar graphs, are given in 9 4. 

3. Proof of the theorem 

The method of proof has its origin in an argument of SevSek er a1 (1983). They 
remarked that, on the triangular lattice, all the boundary sites of a site percolation 
cluster of A belong to a common AB cluster. This is actually incorrect, since the 
boundary of an infinite cluster is made up of finite length boundaries of compact 
regions of its complement. However, an argument of Wierman (1988) constructed an 
infinite AB cluster by connecting together AB clusters that follow the boundary of an 
A cluster in T,. The present proof simplifies the argument and extends it to the class 
(e of graphs. 

Let G be a graph in (e. If there is no p G f for which e,( p ,  G 2 )  > 0, then e:"( p, G )  = 0 
for all p E [0,1], by the reasoning that proved (1). Thus, we takep C f with e,( p ,  G2)  > 0. 
Then, with probability one, there exists an infinite A cluster on G2 for this value of p .  
Since 1 - p a : ,  we also have e,(l - p ,  G,)> 0, so there is positive probability that the 
vertex U is in an infinite B path j3 in G 2 ,  when the parameter value is p .  

We proceed by assigning labels to the cells of the partition generating G. Label a 
cell A if at least one of its vertices is labelled A, and similarly for B. Clearly, any cell 
which has both types of vertices on its perimeter is labelled both A and B. Since such 
a cell is close-packed in G, all its vertices are in a common AB cluster on G. 

The infinite A cluster in G, corresponds to an infinite connected union of cells 
labelled A, which we will call the A region. Any two vertices U, U that are adjacent in 
the A cluster in G, are within a distance two of each other in G, so there is a vertex 
w which is adjacent to both U and U. This implies that w is on the perimeter of a cell 
containing U and on the perimeter of a cell containing U. Then both these cells are 
labelled A, due to U and U, and their union is connected through the vertex w. 

The topological boundary of the A region consists of the set of faces (which are 
portions of hyperplanes), each of which separates a cell of the A region from a cell 
which is not in the A region. Since one of the cells containing the face is not in the 
A region, all vertices of that cell are labelled B, which implies that both cells are 
labelled B. Therefore, every cell in the A region with a face on the boundary of the 
A region is labelled both A and B and all its vertices are in a common AB cluster in 
G. Thus, there is an AB cluster containing every vertex in each component of the 
boundary of this infinite A region in G,. 

If there is a surface containing infinitely many vertices in the boundary of this 
infinite A region in G2,  there is an infinite AB cluster in G, by the previous paragraph. 

If the boundary of the infinite A region in G2 consists of a union of bounded 
surfaces, we use the infinite B path /3 in G, as follows. The path j3 runs alternately 
through the A region and its complement, and there is a connected set of cells labelled 
B corresponding to P. When j3 passes through the A region, the corresponding cells 
are labelled both A and B, so all the vertices of these cells are in a common AB cluster 
in G. Thus, starting from the first vertex of j3 that is in the A region, we can construct 
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an infinite AB path by alternately following p through the A region, then following 
the boundary of the A region around a component of the complement of the A region 
to the point where p enters it again. 

Thus, we have established part ( a )  of the theorem, from which ( b )  follows immedi- 
ately. 

4. Remarks and comments 

( a )  To use the theorem to establish that AB percolation exists on a graph G E  %', it 
suffices to prove that p H  ( G 2 )  < f . 

For a two-dimensional graph G E % there is a corresponding planar mosaic, which 
we denote by M .  Subject to technical conditions involving periodicity and symmetry, 
Kesten's (1982) principal theorem (3.1) yields p c ( G )  +pc(  M )  = 1 and his theorem 10.2 
yields p c ( G ) < p c ( M )  if M is not fully triangulated. While this would imply the 
existence cf AB percolation on G, since pc(  G)  s pc(  G) < f , the last inequality already 
suffices by Wierman (1988). Our theorem may allow determination of a better upper 
bound for p","( G)  in these cases, however. 

If G is a fully triangulated planar graph (and appropriate conditions are satisfied), 
then pc(  G) = by Kesten's theorem 3.1 and the result from Wierman (1988) does not 
establish existence of AB percolation on G. Constructing a graph G' from G by 
inserting (periodically) an edge between two non-adjacent vertices in two triangles 
sharing a common edge (producing a close-packed quadrilateral), one applies Kesten's 
theorem 10.2 to obtain pc(  G') < i .  By the inclusion principle, pc( G 2 )  < pc(  G') < f ,  so 
AB percolation exists on periodic fully triangulated graphs which have one axis of 
symmetry, provided the conditions of Kesten's theorems are satisfied. 

( b )  It is not true that AB percolation occurs on every fully triangulated graph. 
Van den Berg (1981) exhibited a non-periodic fully triangulated graph G with p H (  G) = 
1. It is easily shown that p H ( G 2 )  = 1 also, so AB percolation is impossible on G. 

( c )  It is not true that p?( G) = p H  (G,) for periodic graphs in general. Recall that, 
by Appel and Wierman (1987), AB percolation does not occur on the square lattice. 
However, S ,  contains the matching lattice S M  of S, so p H ( $ )  s p C ( S M )  s 0.4966, where 
the last inequality follows from Toth (1985) and Kesten (1982), theorem 3.1. 

( d )  The upper bound for the AB percolation critical probability of the triangular 
lattice may be improved to pCB( T )  s 2 sin( T /  18) = 0.3473. Observe that T2 contains 
the matching lattice of the hexagonal lattice, denoted H", so p?( T )  = p H  ( T2)  s 
pc( H M )  = 1 -pc (  H). Since the site percolation critical probability is bounded below 
by the bond percolation critical probability, we have 1 - pc(  H )  s 2 sin( T /  18). 
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